脉冲激光沉积(PulsedLaserDeposition,PLD),也被称为脉冲激光烧蚀(pulsed laser ablation,PLA),是一种利用激光对物体进行轰击,然后将轰击出来的物质沉淀在不同的衬底上,得到沉淀或者薄膜的一种手段。
1历史背景
早于1916年,爱因斯坦(AlbertEinstein)已提出受激发射作用的假设。可是,首部以红宝石棒为产生激光媒介的激光器,却要到1960年,才由梅曼(TheodoreH.Maiman)在休斯实验研究所建造出来。总共相隔了44年。使用激光来熔化物料的历史,要追溯到1962年,布里奇(Breech)与克罗斯(Cross)利用红宝石激光器,汽化与激发固体表面的原子。三年后,史密斯(Smith)与特纳(Turner)利用红宝石激光器沉积薄膜,视为脉冲激光沉积技术发展的源头。
2发展历程
不过,脉冲激光沉积的发展与探究,处处受制。事实上,当时的激光科技还未成熟,可以得到的激光种类有限;输出的激光既不稳定,重复频率亦太低,使任何实际的膜生成过程均不能付诸实行。因此,PLD在薄膜制作的发展比其它技术落后。以分子束外延(MBE)为例,制造出来的薄膜质素就优良得多。
往后十年,由于激光科技的急速发展,提升了PLD的竞争能力。与早前的红宝石激光器相比,当时的激光有较高的重复频率,使薄膜制作得以实现。随后,可靠的电子Q开关激光(electronicQ-switcheslasers)面世,能够产生极短的激光脉冲。因此,PLD能够用来做到将靶一致蒸发,并沉积出化学计量薄膜。由于紫外线辐射,薄膜受吸收的深度较浅。之后发展出来的高效谐波激光器(harmonicgenerator)与激基分子激光器(excimer)甚至可产生出强烈的紫外线辐射。自此以后,以非热能激光熔化靶物质变得极为有效。
自1987年成功制作高温的Tc超导膜开始,用作膜制造技术的脉冲激光沉积获得普遍赞誉,并吸引了广泛的注意。过去十年,脉冲激光沉积已用来制作具备外延特性的晶体薄膜。陶瓷氧化物(ceramicoxide)、氮化物膜(nitridefilms)、金属多层膜(metallicmultilayers),以及各种超晶格(superlattices)都可以用PLD来制作。近来亦有报告指出,利用PLD可合成纳米管(nanotubes)、纳米粉末(nanopowders),以及量子点(quantumdots)。关于复制能力、大面积递增及多级数的相关生产议题,亦已经有人开始讨论。因此,薄膜制造在工业上可以说已迈入新纪元。
3PLD的机制
PLD的系统设备简单,相反,它的原理却是非常复杂的物理现象。它涉及高能量脉冲辐射冲击固体靶时,激光与物质之间的所有物理相互作用,亦包括等离子羽状物的形成,其后已熔化的物质通过等离子羽状物到达已加热的基片表面的转移,及最后的膜生成过程。所以,PLD一般可以分为以下四个阶段:
1.激光辐射与靶的相互作用
2.熔化物质的动态
3.熔化物质在基片的沉积
4.薄膜在基片表面的成核(nucleation)与生成
在第一阶段,激光束聚焦在靶的表面。达到足够的高能量通量与短脉冲宽度时,靶表面的一切元素会快速受热,到达蒸发温度。物质会从靶中分离出来,而蒸发出来的物质的成分与靶的化学计量相同。物质的瞬时溶化率大大取决於激光照射到靶上的流量。熔化机制涉及许多复杂的物理现象,例如碰撞、热,与电子的激发、层离,以及流体力学。
在第二阶段,根据气体动力学定律,发射出来的物质有移向基片的倾向,并出现向前散射峰化现象。空间厚度随函数cosnθ而变化,而n>>1。激光光斑的面积与等离子的温度,对沉积膜是否均匀有重要的影响。靶与基片的距离是另一个因素,支配熔化物质的角度范围。亦发现,将一块障板放近基片会缩小角度范围。
第三阶段是决定薄膜质量的关键。放射出的高能核素碰击基片表面,可能对基片造成各种破坏。下图表明了相互作用的机制。高能核素溅射表面的部分原子,而在入射流与受溅射原子之间,建立了一个碰撞区。膜在这个热能区(碰撞区)形成后立即生成,这个区域正好成为凝结粒子的最佳场所。只要凝结率比受溅射粒子的释放率高,热平衡状况便能够快速达到,由於熔化粒子流减弱,膜便能在基片表面生成。[1]
1.易获得期望化学计量比的多组分薄膜,即具有良好的保成分性;
2.沉积速率高,试验周期短,衬底温度要求低,制备的薄膜均匀;
3.工艺参数任意调节,对靶材的种类没有限制;
4.发展潜力巨大,具有极大的兼容性;
5.便于清洁处理,可以制备多种薄膜材料。
注:内容摘自搜狗百科